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ABSTRACT 

Composite rectangular plates are traditionally 
optimized for buckling assuming that perfectly 
uniform loadings are applied. However, this 
assumption is clearly not realistic for composite 
structures in real applications, particularly when 
the multiplicity of potential load cases is 
considered. Composite plate optimization is 
addressed differently in this paper: the loading 
distribution is not assumed to be uniform but it is 
allowed to vary within an admissible set, 
conferring uncertainty to the applied loads. The 
admissible load space comprises loadings that can 
be represented through a collection of piecewise 
linear functions defined along the plate edges. 
The uncertainty of the loading is treated with the 
aid of a minimax formulation where the loading 
configuration and piecewise constant plate 
thicknesses are taken simultaneously as design 
variables. The choice of design variables imply in 
variable thickness non-homogeneous composite 
plates characterized by nonzero thermal residual 
stresses, inherited from the thermal processing. 
These residual stresses must also be accounted for 
in the buckling calculation as they significantly 
affect elastic behavior of the plate. The optimal 
composite plates obtained by the present 
optimization strategy satisfactorily withstand not 
only perfectly uniform loadings but an entire class 
of piecewise linear loadings. 
 
NOMENCLATURE 
fp  prebuckling force vector 
ft  thermal load vector 
h2i, h2i -1  outer ply thicknesses 

h   base plate thickness 
h  vector of reinforcement heights 
K  stiffness matrix 
Kt thermal geometric stiffness 

matrix 

K  geometric stiffness matrix 
m  number of basis functions 
q  eigenvector 
qp prebuckling displacement 

vector 
qt  thermal displacement vector 
Ri  loading component 
r  vector of uncertain loads 
∆T  temperature difference 
λ  buckling load 
 
INTRODUCTION 

Composite beams, plates and shells are widely 
used in the aerospace industry because of their 
advantages over commonly used isotropic 
structures specially when it comes to weight 
savings. The large specific stiffness and resistance 
associated with composites allows for the 
manufacture of highly slender beams, and thin 
plates and shells. This slenderness or thinness 
makes aerospace composite structures prone to 
elastic instability. Therefore, buckling analyses of 
composite structural components must be 
performed in order to ensure, for instance, that a 
composite panel designed to be part of a control 
surface does not buckle thereby compromising its 
aerodynamic shape. 

Optimization of composite structures has been 
performed in the past [1-5] using diverse sets of 
design variables such as number of plies, ply 
thickness, continuous ply orientation, discrete ply 
orientation, reinforcement height and position, 
and lamination parameters. The common aspect 
of these studies is the fact that all of them assume 
that a fixed loading configuration exists and the 
load magnitude, usually denoted by λ, is the 
objective function to be maximized subjected to a 
number of constraints. The example of a plate 
under biaxial loading illustrates the point. In this 
case a constant load ratio is assumed such that the 
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uniform normal loads along the x and y axes hold 
a constant relationship. 

Despite the availability of digital computers it 
is still common practice to use tables and 
diagrams found in aircraft design manuals [6, 7] 
to calculate buckling loads of isotropic and 
orthotropic plates. However, one assumption is 
almost always present in those calculations, 
namely, the applied loading is uniformly 
distributed along the plates’ edges. This 
assumption has historical motivations since the 
prebuckling stress distribution is relatively simple 
if the loading configuration is uniform. 
Nevertheless, the situation observed in practice is 
quite different: the loadings are rarely perfectly 
uniform and typical aircraft structural components 
are usually subjected to hundreds of load cases 
whose distributions are unlikely to be uniform. 

There is one more issue of great concern: 
specification of the loading configuration may 
lead to optimal designs that are highly sensitive to 
variations in that configuration, i.e., if the loading 
is varied the design ceases to be optimal and may 
become flawed or unstable. Cherkaev and 
Cherkaeva [10] proposed a minimax technique to 
reduce or overcome the high sensitivity problem. 
They reformulate the optimization problem in 
such a way that the uncertainties in the loading 
are inherently part of the design variables. Their 
proposal ensures that the optimal designs obtained 
are less sensitive to variations in the loading 
configuration provided these variations obey 
certain integral bounds. The minimax technique 
applied to buckling maximization is more 
efficient if used in conjunction with the stability 
boundary theorem. They are not explained in 
detail in this work because this explanation can be 
found elsewhere [11] although they are essential 
to recognize the efficiency of the proposed 
strategy. 

Apart from the loading uncertainty, the design 
of composite structures is complicated by the 
wide variety of matrix and fiber reinforcement 
materials available, the potential of stress 
concentrations, and thermal residual stresses from 
the manufacturing process. Particularly, thermal 
residual stresses may become so severe in thin 
heterogeneous composite plates that their effects 
cannot be overlooked if a truly reliable composite 
structure is to be designed. Moreover, it is 
possible to predict the thermal residual stress 
distribution with great accuracy [8] such that their 
effects can be not only avoided but also used to 

advantage in certain applications by properly 
tailoring the heterogeneous plate [9]. 

The loading configuration is not fixed in this 
paper but it is assumed to be described by 
piecewise linear functions defined along the plate 
edges. Hence, the entire class of loadings spanned 
by these basis functions is efficiently supported 
by the optimal designs obtained. In addition to the 
mechanical uncertain loads, the service 
temperature of the thin heterogeneous composite 
plate is also assumed to vary within a given range 
such that uncertain thermal loads must also be 
accounted for, i.e., the service temperature 
belongs to the vector of uncertain variables. 
Loading distributions other than piecewise linear 
may be approximated through consideration of 
more basis functions. Hence, the optimization 
problem is reformulated such that three sets of 
design variables are present: (i) the mechanical 
loading (basis functions), (ii) the service 
temperature, and (iii) piecewise constant 
thickness of the plate characterizing a 
heterogeneous composite design. 
 
PLATE CONFIGURATION AND LOADING 
REPRESENTATION 

A typical heterogeneous composite plate 
investigated is depicted in Fig. 1a where the 
piecewise constant thickness distribution can be 
observed in addition to the finite element mesh 
(dashed lines). In this particular sketch the 
heterogeneous plate has sixteen sub-regions with 
different total thicknesses. Figure 1a also shows a 
linear piecewise loading distribution along two 
opposite edges of the plate. Figure 1b illustrates a 
3D view of the plate shown in Fig. 1a. It is 
assumed that the laminate has a total of eight 
layers with orientation [0o/90o/0o/90o]S such that 
the thicknesses of the four inner most plies are 
equal and constant. The 0o ply has its fibers 
aligned with the x axis in Figs. 1a-c. This kind of 
lay up can be regarded as a base plate with 
constant total thickness on top of which layers are 
added whose thicknesses may vary. The 
configuration can be visualized in Fig. 1b where 
the base plate is the dark region and the lighter 
regions represent the additional layers. Figure 1c 
shows sub-region i in detail with the ply 
thicknesses where the shaded plies have 0o 
orientation. 
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Figure 1 - Symmetric laminate composite plate 
with piecewise constant thickness 

 
The piecewise linear loading shown in Fig. 1a 

is represented by a combination of basis functions 
defined at specific points. Figure 2a illustrates a 
general loading applied along one of the plate’s 
edges. The piecewise linear basis functions are 
shown in Fig. 2b and are defined at five points. A 
proper combination of the magnitudes f1, f2, f3, f4 

and f5 (the heights of the triangles in Fig. 2b) 
represents the loading shown in Fig. 2a. Notice 
that the basis functions used to represent the 
loading distribution must not necessarily be 
defined at nodal locations as shown in Fig. 1a. 
However, in order to render the numerical 
procedures simpler, it is desirable to define the 
basis functions in relation to the nodal locations 
as shown in Fig. 2a. 

The piecewise linear loadings are obtained by 
selection of f1, f2, f3, f4 and f5. Any fi is calculated 
as the product of a non-dimensional load 

parameter Ri times a scaling factor if  as given in 

Eq. (1). 
 

iii fRf =         (1) 
 

The load parameter Ri is within the interval 
[0,1] and provides a measure of the relative 
contribution of the ith basis function to the 
resulting net loading. The scaling factors are 
illustrated in Fig. 2c and must be selected such 
that the areas of the triangles in Fig. 2c are all the 
same and equal to some value Lf  where L is the 
length of the plate edge. Physically, this means all 
the resultant forces of each basis function have 
equal magnitude. Therefore, the resultant force 
produced by all the basis functions together has 

magnitude ∑= iRLfF  where m is the number 

of basis functions. If the load parameters 
correspond to the coefficients of a convex 
combination then the constraint expressed in Eq. 
(2) must be fulfilled and LfF = . Additional 
discussion about the load parameters and the 
convex combination will be given in the 
following section. 
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Figure 2: Uncertain piecewise linear loading 

 
Calculation of the objective function λ (the 

buckling load) is divided into three steps: (i) 
solution of a linear thermal problem to obtain 
thermal residual stresses, (ii) solution of a linear 
prebuckling problem to obtain prebuckling 
mechanical stresses and (iii) solution of an 
eigenvalue problem to obtain the buckling load. 
Furthermore, the laminate is symmetric and 
assumed free of initial imperfections such that a 
bifurcation type of buckling is observed. The 
resulting thermal, prebuckling and buckling 
problems can be stated, respectively, in a compact 
form as 
 

tt fKq =       (3a) 

pp fKq =       (3b) 

0qKKK =−+ )( Gt λ      (3c) 
 
where K is the stiffness matrix qt are the thermal 
displacements, qp are the prebuckling 
displacements, ft is the global vector of thermal 
loads, fp is the global vector of applied 
mechanical loads, KG is the geometric stiffness 
matrix due to the nonlinear strains and 
prebuckling stresses, Kt is the geometric stiffness 
matrix due to the nonlinear strains and thermal 
residual stresses, and q is the buckling mode 
associated with eigenvalue λ. 

 
OPTIMIZATION FOR UNCERTAIN 
PIECEWISE LINEAR LOADINGS 

The resulting loading distribution is given by a 
convex combination of the basis functions 
illustrated in Figs. 2a-c. The force produced by 
each basis function Fi is expressed as in Eq. (4). 
 

LfRF ii λ=         (4) 
 
where λ is the buckling load magnitude. Hence, 
the loading distribution is fully described by the 
load parameters Ri while the loading magnitude is 

given by λ and the value of Lf . In this work Lf  
is made equal to unity without loss of generality. 
The shape of the mechanical loading is related to 
the load parameters whereas the thermal loading 
depends on the single parameter ∆T. Moreover, 
these loadings are assumed to be uncertain such 
that Ri and ∆T may be chosen arbitrarily although 
the load parameters must obey 0 ≤ Ri ≤ 1 and Eq. 
(2), and ∆T is within a specified range ∆Tmin ≤ ∆T 
≤ ∆Tmax. 

The danger associated with the loading 
uncertainty can now be appreciated. The 
traditional optimization procedure consists in 
selecting fixed Ri and ∆T and maximizing the 
buckling load magnitude λ against that particular 
loading configuration. However, if Ri and ∆T are 
varied, it cannot be guaranteed that λ will increase 
for the same design. Actually, if an unfortunate 
loading configuration is selected for a particularly 
sensitive design then the buckling load may 
become dangerously low or, even worse, thermal 
buckling may occur without even applying 
mechanical loads. 

It is clear from the discussion above that the 
optimal design depends on the loading 
configuration, suggesting that the loading 
variability must be somehow incorporated in the 
optimization search. The optimization problem is 
reformulated as given by Eq. (5) in order to 
implement that suggestion. 
 

),( minmax
,

T
T

∆
∆

r,h
rh

λ        (5) 

 
where r = (R1, ..., Rm) is the vector of load 
parameters, h is the vector of thicknesses and has 
2n components, n being the number of sub-
regions of the plate as illustrated in Figs. 1a-c. 
Notice that the base plate has constant thickness 
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but the outer most 0o and 90o plies are assigned 
thicknesses h2i and h2i -1 respectively as shown in 
Fig. 1c. One additional constraint exists involving 
h to enforce constant mass, i.e., 
 

∑
=

≤
n

i
i nhh

2

1

        (6) 

 
where n is the number of plate sub-regions nh is 
the maximum thickness one ply can reach if all 
the others are zero 

Solution of the minimax problem stated in Eq. 
(5) provides, simultaneously, the optimal design 
and the worst loading combination in terms of r 
and ∆T. This optimization problem is bilevel and 
its numerical solution is often laborious. 
However, the fact that λ is obtained through 
solution of the classic eigenvalue problem in Eq. 
(3c) allows for a tremendous simplification. 
Equation (5) can be rewritten as 
 

),,( min)(,)( max
,

T
T

∆=
∆

rhhh
rh

λφφ      (7) 

 
where evaluation of φ(h) is itself a minimization 
problem. Apparently, Eq. (7) does not introduce 
any simplification to the problem. However, if the 
extended stability boundary theorem is considered 
[11] then the computation of φ(h) is greatly 
simplified. 

Figure 3 presents the sketch of the stability 
boundary surface for a fixed design h. This 
surface is obtained by variation of the load 
parameters Ri for a fixed ∆T and calculating λ. 
The shaded triangle observed in Fig. 3 is the 
reference plane that is the geometric 
representation of the convex combination 
constraint expressed in Eq. (2). The axes in Fig. 3 

are the forces given in Eq. (4) when 1=Lf . As λ 
varies the reference plane moves away from the 
origin if λ > 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Stability boundary sketch 

 
The stability boundary theorem guarantees 

that the stability surface is always concave 
provided K+Kt is positive-definite and even when 
KG is indefinite. If no thermal buckling has 
occurred than K+Kt is certainly positive-definite. 
Since maximization of the buckling load is the 
objective the optimization search will not lead to 
designs that possess indefinite matrices K+Kt, 
thus making sure that the hypothesis of the 
stability boundary theorem is observed. 
Nevertheless, in order to be strictly certain, a 
Sturm check of K+Kt is conducted for every 
design evaluated to ensure that positive-
definiteness is present. This check adds little 
computational cost to the analysis because matrix 
K+Kt must be decomposed anyway in order to 
obtain the eingevalues of the problem in Eq. (3c). 

Computation of φ(h) is easily done for it is 
sufficient to evaluate λ at the points where the 
reference plane crosses the axes in Fig. 3. The 
concavity of the stability boundary surface 
automatically guarantees that any other loading 
configuration obtained through a convex 
combination of those points leads to higher λ. A 
similar argument can be employed to conclude 
that the whole interval of possible ∆T (∆Tmin ≤ ∆T 
≤ ∆Tmax) must not be checked but only its ends: 
∆Tmin and ∆Tmax. 

The optimization problem stated in Eq. (5) is 
in fact greatly simplified due to the concavity of 
the stability boundary surface. Numerical solution 
of the optimization problem is done in two steps: 
firstly 5,000 random designs are assessed in order 
to try and reduce the risk of convergence to local 
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optima, and secondly the best design randomly 
obtained is taken as the starting point for a 
Powell’s search [14]. The choice of Powell’s 
method over gradient-based nonlinear methods is 
motivated by simplicity. It requires neither the 
gradient of the objective function nor the 
gradients of the constraints. Therefore, Powell’s 
method is adequate in this case because it is 
simple to implement and avoids potential 
complications due to derivatives of repeated 
eigenvalues. Moreover, the algorithm requires 
only continuity of constraints and objective-
function, properties that the problem at hand 
presents. The optimization is assumed to have 
converged when the relative difference between 
the previous and present values of φ does not 
exceed 0.001. 
 
NUMERICAL SIMULATIONS 

A square plate simply supported along the 
four edges is considered for the numerical 
simulations. Notice that these boundary 
conditions apply to the mechanical problem stated 
in Eq. (3b) but for the thermal problem expressed 
in Eq. (3a) the plate is completely free to model 
the curing process. The plate edges are 36 cm 
long and the mechanical loadings are applied 
along the edges parallel to the y axis as shown in 
Fig. 1a. The base plate has 4 layers each one with 
constant thickness of 0.15 mm. The value of h 
expressed in Eq. (6) is 0.3 mm and, considering 
16 sub-regions (n = 16), the maximum thickness 
one outer ply can reach is 4.8 mm. The material 
selected for simulations is given in Table 1. The 
processing temperature adopted is 120oC. 
 

Table 1 – Material properties of the T300-
5208 graphite/epoxy 

property value 
Modulus of elasticity, E11 154.0 GPa 
Modulus of elasticity, E22 11.13 GPa 

In-plane Poisson’s ratio, ν12 0.304 
In-plane shear modulus, G12 6.98 GPa 

Transverse shear modulus, G13 6.98 GPa 
Transverse shear modulus, G23 3.36 GPa 
Thermal expansion coef., α1 –0.17×10-6 oC-1 

Thermal expansion coef., α2 23.1×10-6 oC-1 
 

Comparison will be made considering the 
traditional optimal design obtained under fixed 
loading assumption the optimal design obtained 
by the minimax strategy introduced in Eq. (5) and 
re-written in Eq. (7). The fixed loading consists of 

the uniformly distributed load with a service 
temperature of 20oC such that ∆T = –100oC. For 
the uncertain mechanical loading five basis 
functions are used as depicted in Fig. 2c and, 
assuming that the optimized plate will be 
mounted on an commercial jet, the service 
temperature ranges from –60oC and +80oC such 
that –180oC ≤ ∆T ≤ –40oC. 

The optimal thickness distributions obtained 
are given in Table 2. The traditional and the 
minimax optimal designs can be visualized in 
Figs. 4a and 4b, respectively. Symmetry of both 
optimal designs is observed about planes xz and 
yz. This result is expected because there is 
symmetry about planes xz and yz of the loadings 
and boundary conditions. In the case of the 
minimax strategy the basis functions are 
symmetrically defined about plane xz which 
translates into loading symmetry. Both optimal 
plates are reinforced along the plate central line 
parallel to the x axis where thicker sub-regions are 
present although different thickness distributions 
are obtained for the traditional and the minimax 
optimal designs. Also, the heterogeneous design 
is tailored such that the effects of the thermal 
residual stresses are beneficial but this is not as 
straightforward to recognize as the concentration 
of mass along the plate central line. 
 

Table 2 – Optimal thickness distributions 
 Traditional Minimax 

h1, h2 (mm) 0.00, 0.00 0.05, 0.01 
h3, h4 (mm) 0.06, 0.00 0.09, 0.01 
h5, h6 (mm) 0.06, 0.00 0.09, 0.01 
h7, h8 (mm) 0.00 0.00 0.05, 0.01 
h9, h10 (mm) 0.08, 0.36 0.24, 0.28 
h11, h12 (mm) 0.00, 0.70 0.05, 0.47 
h13, h14 (mm) 0.00, 0.70 0.05, 0.47 
h15, h16 (mm) 0.08, 0.36 0.24, 0.28 
h17, h18 (mm) 0.08, 0.36 0.24, 0.28 
h19, h20 (mm) 0.00, 0.70 0.05, 0.47 
h21, h22 (mm) 0.00, 0.70 0.05, 0.47 
h23, h24 (mm) 0.08, 0.36 0.24, 0.28 
h25, h26 (mm) 0.00, 0.00 0.05, 0.01 
h27, h28 (mm) 0.06, 0.00 0.09, 0.01 
h29, h30 (mm) 0.06, 0.00 0.09, 0.01 
h31, h32 (mm) 0.00, 0.00 0.05, 0.01 
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Figure 4: Optimal designs 
 

Table 3 shows a comparative performance of 
the two optimal designs in terms of buckling 
loads (in N) obtained as both thermal and 
mechanical loadings are varied. The buckling 
loads associated with the load parameters R4 and 
R5 are not shown because they are equal to those 
associated with R2 and R1, respectively, in view of 
the symmetries mentioned above. It is obvious 
that the traditional design has superior 
performance when the loading is uniform and ∆T 
= –100oC because it is optimized for that 
particular situation. However, notice that in this 
case the minimax design yields λ = 1375.4 N, 
what is about 80% of the maximum λ = 1712.2 N. 
On the other hand, when R1 = 1.0, R2 = R3 = R4 = 
R5 =0.0 and ∆T = –180oC the traditional design 
has poorer performance since it yields λ = 505.3 
N what is only 55% of the minimax design’s λ = 
915.5 N. 
 
 
 
 
 
 

Table 3 – Sensitivity of optimal designs 
 ∆T 

(oC) 
R1=1.0 R2=1.0 R3=1.0 uniform 

-180 505.3 876.3 1270.4 1720.6 

-100 524.9 886.4 1223.1 1712.2 

T
ra

di
tio

na
l 

-40 536.2 888.3 1183.3 1691.7 

-180 915.5 943.1 962.1 1405.3 

-100 917.6 928.8 936.2 1375.4 

M
in

im
a

x 

-40 914.3 914.3 914.3 1349.4 

 
COMMENTS AND CONCLUSIONS 

The minimax strategy proposed is applicable 
in the optimization of structures against buckling 
when multiple load cases are present or when the 
loadings are unpredictable. It is shown that for 
optimization purposes it is unnecessary to 
consider all the loads cases simultaneously but 
only a subset of them that contains the points 
where the reference plane intersects the axes 
associated with the basis functions as illustrated 
in Fig. 3. This property is particularly important 
whenever the multiplicity of load cases is so large 
that simultaneous consideration of them all leads 
to optimization problems so expensive 
computationally that they cannot be solved by the 
optimization algorithms available today in a 
reasonable time frame. 

The minimax strategy can be regarded as a 
deterministic tool to study a probabilistic 
problem. It provides the engineer with optimal 
designs not based on probability distributions and 
averages but based on extreme properties of the 
systems under investigation. These extreme 
properties depend on the class of admissible loads 
chosen such it must be judiciously selected. The 
piecewise linear loads seem to be an adequate 
choice because it is at the same time simple and 
permits the representation of numerous load 
cases. If the class of loadings is to be expanded 
more basis functions may be added to the 
problem. 

The load parameters Ri defined in Eq. (1) have 
equal probability of occurrence. However, it may 
be the case that a given loading configuration is 
more likely to appear. The idea to handle this 
situation is to split the load parameters into a 
certain component R0i and an uncertain 
component ∆Ri such that Ri = R0i + ∆Ri. The 
certain component is invariant and represents the 

(a) 

(b) 
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loading configuration that is likely to occur. The 
uncertain components are perturbations of the 
most likely loading configuration. For instance, if 
the uniform loading is to be favored in the 
simulation conducted such that it has 50% 
probability of occurrence then 2R01 = R02 = R03 = 
R04 = 2R05 = 0.125 and Σ(∆Ri) = 0.5. 
Minimization of φ in Eq. (7) is slightly different 
because now more points must be checked, not 
simply the points where the stability surface 
crosses the axes [11] but there is essentially no 
modification to the optimization strategy. 

A finite element mesh of 8×8 elements was 
used to model the entire plate. Mesh refinement 
was done with 12×12 elements to make sure that 
the results obtained are reliable, i.e., that 
numerical approximations are acceptable. The 
element used was the bicubic Lagragian whose 
matrix is 80×80 such that relatively coarse meshes 
provide accurate results. Hence, the finer 12×12 
mesh indicated small variations in terms of 
buckling loads (less than 3%) for all the basis 
functions. 
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