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ABSTRACT K geometric stiffness matrix
Composite rectangular plates are traditionally m number of basis functions

optimized for buckling assuming that perfectly q eigenvector

uniform loadings are applied. However, this g, prebuckling displacement

assumption is clearly not realistic for composite vector

structures in real applications, particularly when g; thermal displacement vector

the multiplicity of potential load cases is R loading component

considered. Composite plate optimization isr vector of uncertain loads

addressed differently in this paper: the loadingAT temperature difference

distribution is not assumed to be uniform but it is ) buckling load

allowed to vary within an admissible set,

conferring uncertainty to the applied loads. The INTRODUCTION

admissible load space comprises loadings that can Composite beams, plates and shells are widely
be represented through a collection of piecewiseused in the aerospace industry because of their
linear functions defined along the plate edges.advantages over commonly used isotropic
The uncertainty of the loading is treated with the structures specially when it comes to weight
aid of a minimax formulation where the loading savings. The large specific stiffness and resistance
configuration and piecewise constant plate associated with composites allows for the
thicknesses are taken simultaneously as desigmanufacture of highly slender beams, and thin
variables. The choice of design variables imply inplates and shells. This slenderness or thinness
variable thickness non-homogeneous compositenakes aerospace composite structures prone to
plates characterized by nonzero thermal residuaklastic instability. Therefore, buckling analyses of
stresses, inherited from the thermal processingcomposite structural components must be
These residual stresses must also be accounted fgerformed in order to ensure, for instance, that a
in the buckling calculation as they significantly composite panel designed to be part of a control
affect elastic behavior of the plate. The optimal surface does not buckle thereby compromising its
composite plates obtained by the presentaerodynamic shape.

optimization strategy satisfactorily withstand not  Optimization of composite structures has been
only perfectly uniform loadings but an entire class performed in the past [1-5] using diverse sets of

of piecewise linear loadings. design variables such as number of plies, ply
thickness, continuous ply orientation, discrete ply
NOMENCLATURE orientation, reinforcement height and position,
fo prebuckling force vector and lamination parameters. The common aspect
fi thermal load vector of these studies is the fact that all of them assume
hai, Moy outer ply thicknesses that a fixed loading configuration exists and the
h base plate thickness load magnitude, usually denoted bly is the
h vector of reinforcement heights  objective function to be maximized subjected to a
K stiffness matrix number of constraints. The example of a plate
K thermal geometric stiffness under biaxial loading illustrates the point. In this

matrix case a constant load ratio is assumed such that the
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uniform normal loads along theandy axes hold advantage in certain applications by properly
a constant relationship. tailoring the heterogeneous plate [9].

Despite the availability of digital computers it The loading configuration is not fixed in this
is still common practice to use tables andpaper but it is assumed to be described by
diagrams found in aircraft design manuals [6, 7] piecewise linear functions defined along the plate
to calculate buckling loads of isotropic and edges. Hence, the entire class of loadings spanned
orthotropic plates. However, one assumption isby these basis functions is efficiently supported
almost always present in those calculations,by the optimal designs obtained. In addition to the
namely, the applied loading is uniformly mechanical uncertain loads, the service
distributed along the plates’ edges. Thistemperature of the thin heterogeneous composite
assumption has historical motivations since theplate is also assumed to vary within a given range
prebuckling stress distribution is relatively simple such that uncertain thermal loads must also be
if the loading configuration is uniform. accounted for, i.e., the service temperature
Nevertheless, the situation observed in practice idvelongs to the vector of uncertain variables.
quite different: the loadings are rarely perfectly Loading distributions other than piecewise linear
uniform and typical aircraft structural components may be approximated through consideration of
are usually subjected to hundreds of load casesnore basis functions. Hence, the optimization
whose distributions are unlikely to be uniform. problem is reformulated such that three sets of

There is one more issue of great concern:design variables are present. (i) the mechanical
specification of the loading configuration may loading (basis functions), (i) the service
lead to optimal designs that are highly sensitive totemperature, and (iii) piecewise constant
variations in that configuration, i.e., if the loading thickness of the plate characterizing a
is varied the design ceases to be optimal and maheterogeneous composite design.
become flawed or wunstable. Cherkaev and
Cherkaeva [10] proposed a minimax technique toPLATE CONFIGURATION AND LOADING
reduce or overcome the high sensitivity problem. REPRESENTATION
They reformulate the optimization problem in A typical heterogeneous composite plate
such a way that the uncertainties in the loadinginvestigated is depicted in Fig. la where the
are inherently part of the design variables. Theirpiecewise constant thickness distribution can be
proposal ensures that the optimal designs obtainedbserved in addition to the finite element mesh
are less sensitive to variations in the loading(dashed lines). In this particular sketch the
configuration provided these variations obey heterogeneous plate has sixteen sub-regions with
certain integral bounds. The minimax technigue different total thicknesses. Figure 1a also shows a
applied to buckling maximization is more linear piecewise loading distribution along two
efficient if used in conjunction with the stability opposite edges of the plate. Figure 1b illustrates a
boundary theorem. They are not explained in3D view of the plate shown in Fig. la. It is
detail in this work because this explanation can beassumed that the laminate has a total of eight
found elsewhere [11] although they are essentialayers with orientation [090°/0°%/9(°]s such that
to recognize the efficiency of the proposed the thicknesses of the four inner most plies are
strategy. equal and constant. The® @ly has its fibers

Apart from the loading uncertainty, the design aligned with thex axis in Figs. 1a-c. This kind of
of composite structures is complicated by thelay up can be regarded as a base plate with
wide variety of matrix and fiber reinforcement constant total thickness on top of which layers are
materials available, the potential of stressadded whose thicknesses may vary. The
concentrations, and thermal residual stresses frongonfiguration can be visualized in Fig. 1b where
the manufacturing process. Particularly, thermalthe base plate is the dark region and the lighter
residual stresses may become so severe in thinegions represent the additional layers. Figure 1c
heterogeneous composite plates that their effectshows sub-regioni in detail with the ply
cannot be overlooked if a truly reliable composite thicknesses where the shaded plies ha%e 0
structure is to be designed. Moreover, it is orientation.
possible to predict the thermal residual stress
distribution with great accuracy [8] such that their
effects can be not only avoided but also used to
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and fs (the heights of the triangles in Fig. 2b)
represents the loading shown in Fig. 2a. Notice
that the basis functions used to represent the
loading distribution must not necessarily be
defined at nodal locations as shown in Fig. 1la.
However, in order to render the numerical
procedures simpler, it is desirable to define the
basis functions in relation to the nodal locations
as shown in Fig. 2a.

The piecewise linear loadings are obtained by
selection offy, f;, fs, f4 andfs. Any f; is calculated
as the product of a non-dimensional load

parameteRR times a scaling factorf_i as given in
Eq. ().

fi =Rf; @)

The load parameteR is within the interval
[0,1] and provides a measure of the relative
contribution of theith basis function to the
resulting net loading. The scaling factors are
illustrated in Fig. 2c and must be selected such
that the areas of the triangles in Fig. 2c arehall t
same and equal to some valfie whereL is the

length of the plate edge. Physically, this means all
the resultant forces of each basis function have
equal magnitude. Therefore, the resultant force
produced by all the basis functions together has

magnitude F = f_LZ R wherem is the number

of basis functions. If the load parameters
correspond to the coefficients of a convex
combination then the constraint expressed in Eq.

(2) must be fulfilled andF = fL. Additional
discussion about the load parameters and the

convex combination will be given in the
following section.

Figure 1 - Symmetric laminate composite plate
with piecewise constant thickness

The piecewise linear loading shown in Fig. 1a
is represented by a combination of basis functions
defined at specific points. Figure 2a illustrates a
general loading applied along one of the plate’s
edges. The piecewise linear basis functions are
shown in Fig. 2b and are defined at five points. A
proper combination of the magnitudgsf,, fs, f4

(a)
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OPTIMIZATION FOR UNCERTAIN
PIECEWISE LINEAR LOADINGS

The resulting loading distribution is given by a
convex combination of the basis functions
illustrated in Figs. 2a-c. The force produced by
each basis functioR; is expressed as in Eq. (4).

F =R fL %)

where A is the buckling load magnitude. Hence,
the loading distribution is fully described by the
load parameter® while the loading magnitude is

given by and the value offL . In this work fL

is made equal to unity without loss of generality.
The shape of the mechanical loading is related to
the load parameters whereas the thermal loading
l12 23 34 45 depends on the single paramefdr. Moreover,
these loadings are assumed to be uncertain such
(© thatR andAT may be chosen arbitrarily although
the load parameters must obe¥ & < 1 and Eq.
Figure 2: Uncertain piecewise linear loading  (2), andAT is within a specified rang&T, < AT
< AT
Calculation of the objective functiod (the The danger associated with the loading
buckling load) is divided into three steps: (i) uncertainty can now be appreciated. The
solution of a linear thermal problem to obtain traditional optimization procedure consists in
thermal residual stresses, (ii) solution of a linearselecting fixedR and AT and maximizing the
prebuckling problem to obtain prebuckling buckling load magnitudd against that particular
mechanical stresses and (lll) solution of an |0ading Conﬁguration_ However, B andAT are
eigenvalue problem to _obtain'the buckling load. yaried, it cannot be guaranteed thatill increase
Furthermore, the laminate is symmetric andfor the same design. Actually, if an unfortunate
assumed free of initial imperfections such that ajgading configuration is selected for a particularly
bifurcation type of buckling is observed. The ggnsitive design then the buckling load may
resulting thermal, prebuckling and buckling pecome dangerously low or, even worse, thermal
problems can be stated, respectively, in a compagbyckling may occur without even applying

form as mechanical loads.
It is clear from the discussion above that the
Ka, =f, (3a)  optimal design depends on the loading
Kg, =f, (3b)  configuration, suggesting that the loading
variability must be somehow incorporated in the
(K+K-AKg)q=0 (3c) optimization search. The optimization problem is

reformulated as given by Eq. (5) in order to
whereK is the stiffness matrig; are the thermal  jmplement that suggestion.
displacements, q, are the prebuckling

displacementsf; is the global vector of thermal maxmin A(h,r,AT) (5)
loads, f, is the global vector of applied h r.AT

mechanical loadsKs is the geometric stiffness

matrix due to the nonlinear strains and wherer = (R, ..., Ry is the vector of load

prebuckling stressek; is the geometric stiffness parametersh is the vector of thicknesses and has
matrix due to the nonlinear strains and thermal2n components,n being the number of sub-
residual stresses, amgl is the buckling mode regions of the plate as illustrated in Figs. la-c.
associated with eigenvalue Notice that the base plate has constant thickness
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but the outer most°Cand 90 plies are assigned

thicknessesy,; andhy_; respectively as shown in Fi

Fig. 1c. One additional constraint exists involving stabilit

h to enforce constant mass, i.e., y
boundary

2n
Zn <nh (6)
i=1

referenc

wheren is the number of plate sub-regionis is
plane

the maximum thickness one ply can reach if all

the others are zero
Solution of the minimax problem stated in Eq.
(5) provides, simultaneously, the optimal design A 1

and the worst loading combination in termsr of
andAT. This optimization problem is bilevel and F
its numerical solution is often laborious.
However, the fact thatl is obtained through
solution of the classic eigenvalue problem in Eq.
(3c) allows for a tremendous simplification.
Equation (5) can be rewritten as

Figure 3: Stability boundary sketch

The stability boundary theorem guarantees
that the stability surface is always concave
providedK +K, is positive-definite and even when
Kg is indefinite. If no thermal buckling has
occurred tharK +K, is certainly positive-definite.
where evaluation ofh) is itself a minimization ~SiNce maximization of the buckling load is the
problem. Apparently, Eq. (7) does not introduce objective the optimization search will not lead to
any simplification to the problem. However, if the designs that possess indefinite matri¢esk,,
extended stability boundary theorem is considerednuS making sure that the hypothesis of the

111 th th tati h) i tl stability boundary theorem ?s obser_ved.
[singplifigg e computation ofth) is greatly Nevertheless, in order to be strictly certain, a

Figure 3 presents the sketch of the stabilitySturm check ofK+K, is conducted for every

boundary surface for a fixed desigm This design evalgated to ensure that positi've-
surface is obtained by variation of the load deﬂmtene_ss is present. This qheck adds “m?
parameterdk for a fixed AT and calculatingd. cKoJ:rilputatlc;ngl CSSt to the agaly5|s becguse dmattrlx
The shaded triangle observed in Fig. 3 is the bt N rtr;]us e elcomp?cstﬁ an;gvay _mEor e?: 0
reference plane that is the geometric0 ain the eingevalues of the problem in Eq. (3c).

representation of the convex combination ~Computation ofgh) is easily done for it is

constraint expressed in Eq. (2). The axes in Fig. $ufficient to evaluatel at the points where the
the f . in Eq. (4) wheh =1 As A reference plane crosses the axes in Fig. 3. The
are the forces given in Eq. (4) w =LA concavity of the stability boundary surface

varies the reference plane moves away from theyutomatically guarantees that any other loading
origin if A> 1. configuration obtained through a convex
combination of those points leads to higherA
similar argument can be employed to conclude
that the whole interval of possibdd (AT, < AT
< ATnay must not be checked but only its ends:
ATmin aNdATmax
The optimization problem stated in Eq. (5) is
in fact greatly simplified due to the concavity of
the stability boundary surface. Numerical solution
of the optimization problem is done in two steps:
firstly 5,000 random designs are assessed in order
to try and reduce the risk of convergence to local

mhaxqa(h) , ¢(h)=mAipA(h,r,AT) @)
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optima, and secondly the best design randomlythe uniformly distributed load with a service
obtained is taken as the starting point for atemperature of 2& such than\T = —100C. For
Powell's search [14]. The choice of Powell's the uncertain mechanical loading five basis
method over gradient-based nonlinear methods igunctions are used as depicted in Fig. 2c and,
motivated by simplicity. It requires neither the assuming that the optimized plate will be
gradient of the objective function nor the mounted on an commercial jet, the service
gradients of the constraints. Therefore, Powell’'stemperature ranges from 260and +80C such
method is adequate in this case because it ishat —186C < AT < -40C.
simple to implement and avoids potential  The optimal thickness distributions obtained
complications due to derivatives of repeatedare given in Table 2. The traditional and the
eigenvalues. Moreover, the algorithm requiresminimax optimal designs can be visualized in
only continuity of constraints and objective- Figs. 4a and 4b, respectively. Symmetry of both
function, properties that the problem at handoptimal designs is observed about plaresnd
presents. The optimization is assumed to havg;z This result is expected because there is
converged when the relative difference betweensymmetry about planesz andyz of the loadings
the previous and present values @fdoes not and boundary conditions. In the case of the
exceed 0.001. minimax strategy the basis functions are
symmetrically defined about plangz which
NUMERICAL SIMULATIONS translates into loading symmetry. Both optimal
A square plate simply supported along the plates are reinforced along the plate central line
four edges is considered for the numericalparallel to thex axis where thicker sub-regions are
simulations. Notice that these boundary present although different thickness distributions
conditions apply to the mechanical problem statedare obtained for the traditional and the minimax
in Eq. (3b) but for the thermal problem expressedoptimal designs. Also, the heterogeneous design
in Eq. (3a) the plate is completely free to model is tailored such that the effects of the thermal
the curing process. The plate edges are 36 cmesidual stresses are beneficial but this is not as
long and the mechanical loadings are appliedstraightforward to recognize as the concentration
along the edges parallel to tii@xis as shown in  of mass along the plate central line.
Fig. 1la. The base plate has 4 layers each one with

constant thickness of 0.15 mm. The valuehof Table 2 — Optimal thickness distributions

expressed in Eg. (6) is 0.3 mm and, considering Traditional Minimax
16 sub-regionsn(= 16), the maximum thickness hy, N, (MM) 0.00, 0.00 0.05, 0.01
one outer ply can reach is 4.8 mm. The material hs, ha (MM) 0.06, 0.00 0.09, 0.01
selected for simulations is given in Table 1. The hs, hs (MM) 0.06, 0.00 0.09, 0.01
processing temperature adopted is’C20 hy, hg (MM) 0.000.00 0.05, 0.01
. . hg, hjp (mm)  0.08,0.36 0.24, 0.28
Table 1 — Material properties of the T300- hy1, hi (mm)  0.00, 0.70  0.05, 0.47
5208 graphite/epoxy his, hua (MM)  0.00, 0.70  0.05, 0.47
property value his, g (mm)  0.08,0.36 0.24, 0.28
Modulus of elasticityE;; 154.0 GPa h;7, hig(mm) 0.08,0.36 0.24, 0.28
Modulus of elasticityEo, 11.13 GPa hig, hpo (mm)  0.00, 0.70 0.05, 0.47
In-plane Poisson’s ratia;, 0.304 ho1, ho, (Mm)  0.00, 0.70  0.05, 0.47
In-plane shear modulu&;, 6.98 GPa has, hos (mm)  0.08,0.36 0.24, 0.28
Transverse shear modul@,; 6.98 GPa has, hpg (mm)  0.00, 0.00 0.05, 0.01
Transverse shear modul@z; 3.36 GPa hy7, hpg (mm)  0.06, 0.00 0.09, 0.01
Thermal expansion coefr;  —-0.17%10°°C* h2g, o (Mm)  0.06, 0.00  0.09, 0.01
Thermal expansion coefr, ~ 23.1x10°°C* P31, he2 (Mm)  0.00, 0.00  0.05, 0.01

Comparison will be made considering the
traditional optimal design obtained under fixed
loading assumption the optimal design obtained
by the minimax strategy introduced in Eg. (5) and
re-written in Eq. (7). The fixed loading consists of
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Table 3 — Sensitivity of optimal designs

AT R=1.0 R=1.0 Rs=1.0 uniform

€9

-180 505.3 876.3 1270.4 1720.6

[

g -100 5249 886.4 1223.1 17122
E -40 536.2 888.3 1183.3 1691.7
x -180 9155 943.1 962.1 1405.3
% -100 917.6 928.8 936.2 13754
= 40 9143 9143 9143 13494

COMMENTSAND CONCLUSIONS
The minimax strategy proposed is applicable
in the optimization of structures against buckling
when multiple load cases are present or when the
loadings are unpredictable. It is shown that for
optimization purposes it is unnecessary to
consider all the loads cases simultaneously but
only a subset of them that contains the points
where the reference plane intersects the axes
associated with the basis functions as illustrated
in Fig. 3. This property is particularly important
. i i whenever the multiplicity of load cases is so large
Figure 4: Optimal designs that simultaneous consideration of them all leads
. to optimization problems so expensive
Table 3 shows a comparative performance ofcompytationally that they cannot be solved by the
the two optimal designs in terms of buckling gptimization algorithms available today in a
loads (in N) obtained as both thermal and egzsonable time frame.
mechanical loadings are varied. The buckling  The minimax strategy can be regarded as a
loads associated with the load parameRrand  geterministic tool to study a probabilistic
Rs are not shown because they are equal to thosgyoplem. It provides the engineer with optimal
associated witlk, andR;, respectively, in view of  gasigns not based on probability distributions and
the symmetries mentioned above. It is obviousayerages but based on extreme properties of the
that the ftraditional design has superior systems under investigation. These extreme
performance when the loading is uniform &l properties depend on the class of admissible loads
= -100C because it is optimized for that chosen such it must be judiciously selected. The
particular Situation. HOWeVer, notice that in thIS piecewise |inear |Oads seem to be an adequate
case the minimax design yields= 1375.4 N,  choice because it is at the same time simple and
what is about 80% of the maximuir= 1712.2 N.  permits the representation of numerous load
On the other hand, whéd = 1.0,R, =Ry =Ry = cases. If the class of loadings is to be expanded
Rs =0.0 andAT = -180C the traditional design more basis functions may be added to the
has poorer performance since it yiellss 505.3  problem.

N what is only 55% of the minimax desigms= The load parametef$ defined in Eq. (1) have
915.5 N. equal probability of occurrence. However, it may

be the case that a given loading configuration is
more likely to appear. The idea to handle this
situation is to split the load parameters into a
certain component R; and an uncertain
componentAR such thatR = R; + AR. The
certain component is invariant and represents the
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loading configuration that is likely to occur. The
uncertain components are perturbations of the
most likely loading configuration. For instance, if [6]
the uniform loading is to be favored in the
simulation conducted such that it has 50%
probability of occurrence therRg; = Ry, = Ryz =

Ry = 2R = 0.125 and Z(AR) = 0..
Minimization of gin Eq. (7) is slightly different
because now more points must be checked, noi8]
simply the points where the stability surface
crosses the axes [11] but there is essentially no
modification to the optimization strategy.

A finite element mesh of ® elements was [9]
used to model the entire plate. Mesh refinement
was done with 1212 elements to make sure that
the results obtained are reliable, i.e., that

[7]

(WCSMO/3), Buffalo, NY, USA, 17-21 May
1999.

Bruhn EF. Analysis and design of flight
vehicle structures. Cincinnati: Tri-State
Offset, 1973.

Niu MCY. Airframe stress analysis and
sizing. Hong-Kong: Hong Kong Conmilit
Press, 2001.

de Almeida SFM, Hansen JS. Enhanced
buckling loads of composite plates with
tailored thermal residual stresses. Journal of
Applied Mechanics 1997; 64(4): 772-780.

de Faria AR, Hansen JS. Optimal buckling
loads of nonuniform composite plates with
thermal residual stresses. Journal of Applied
Mechanics 1999; 66(2): 388-395.

numerical approximations are acceptable. ThellOlCherkaev E, Cherkaeva A. Optimal design

element used was the bicubic Lagragian whose
matrix is 880 such that relatively coarse meshes
provide accurate results. Hence, the finer12
mesh indicated small variations in terms of
buckling loads (less than 3%) for all the basis
functions.
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